skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meeder, John F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim and QuestionsSea‐level rise has been responsible for extensive vegetation changes in coastal areas worldwide. The intent of our study was to analyze vegetation dynamics of a South Florida coastal watershed within an explicit spatiotemporal framework that might aid in projecting the landscape's future response to restoration efforts. We also asked whether recent transgression by mangroves and other halophytes has resulted in reduced plant diversity at local or subregional scales. LocationFlorida’'s Southeast Saline Everglades, USA. MethodsWe selected 26 locations, representing a transition zone between sawgrass marsh and mangrove swamp, that was last sampled floristically in 1995. Within this transition zone, leading‐ and trailing‐edge subzones were defined based on plant composition in 1995. Fifty‐two site × time combinations were classified and then ordinated to examine vegetation–environment relationships using 2016 environmental data. We calculated alpha‐diversity using Hill numbers or Shannon–Weiner index species equivalents and compared these across the two surveys. We used a multiplicative diversity partition to determine beta‐diversity from landscape‐scale (gamma) diversity in the entire dataset or in each subzone. ResultsMangrove and mangrove associates became more important in both subzones: through colonization and establishment in the leading edge, and through population growth combined with the decline of freshwater species in the trailing edge. Alpha‐diversity increased significantly in the leading edge and decreased nominally in the trailing edge, while beta‐diversity declined slightly in both subzones as well as across the study area. ConclusionsRecent halophyte encroachment in the Southeast Saline Everglades continues a trend evident for almost a century. While salinity is an important environmental driver, species’ responses suggest that restoration efforts based on supplementing freshwater delivery will not reverse a trend that depends on multiple interacting factors. Sea‐level‐rise‐driven taxonomic homogenization in coastal wetland communities develops slowly, lagging niche‐based changes in community structure and composition. 
    more » « less
  2. null (Ed.)
    Naturally formed forest patches known as tree islands are found within lower-statured wetland matrices throughout the world, where they contrast sharply with the surrounding vegetation. In some coastal wetlands they are embedded in former freshwater marshes that are currently exposed to saltwater intrusion and mangrove encroachment associated with accelerating sea-level rise. In this study we resurveyed tree composition and determined environmental conditions in tree islands of the coastal Florida Everglades that had been examined two decades earlier. We asked whether tree islands in this coastal transition zone were differentiated geomorphologically as well as compositionally, and whether favorable geomorphology enabled coastal forest type(s) to maintain their compositional integrity against rising seas. Patterns of variation in geomorphology and soils among forest types were evident, but were dwarfed by differences between forest and adjacent wetlands. Tree island surfaces were elevated by 12–44 cm, and 210Pb analyses indicated that their current rates of vertical accretion were more rapid than those of surrounding ecosystems. Tree island soils were deeper and more phosphorus-rich than in the adjoining matrix. Salinity decreased interiorward in both tree island and marsh, but porewater was fresher in forest than marsh in Mixed Swamp Forest, midway along the coastal gradient where tropical hardwoods were most abundant. Little decrease in the abundance of tropical hardwood species nor increase in halophytes was observed during the study period. Our data suggest that geomorphological differences between organic tree island and marl marsh, perhaps driven by groundwater upwelling through more transmissive tree island soils, contributed to the forests’ compositional stability, though this stasis may be short-lived despite management efforts. 
    more » « less